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Background. A survival predictionmodel based on deep learning has higher accuracy than the CPHmodel in predicting the survival of
CCU patients, and it also has a better discrimination ability. We collected information on patients with various diseases in coronary
care units (CCUs) from the Medical Information Mart for Intensive Care III (MIMIC-III) database. The purpose of this study was to
use this information to construct a neural-network model based on deep learning to predict the survival probabilities of patients with
conditions that are common in CCUs.Method. We collected information on patients in the United States with five common diseases
in CCUs from 2001 to 2012.We randomly divided the patients into a training cohort and a testing cohort at a ratio of 7 : 3 and applied
a survival prediction method based on deep learning to predict their survival probability. We compared our model with the Cox
proportional-hazards regression (CPH) model and used the concordance indexes (C-indexes), receiver operating characteristic
(ROC) curve, and calibration plots to evaluate the predictive performance of the model. Results. The 3,388 CCU patients included
in the study were randomly divided into 2,371 in the training cohort and 1,017 in the testing cohort. The stepwise regression
results showed that the important factors affecting patient survival were the type of disease, age, race, anion gap, glucose,
neutrophils, white blood cells, potassium, creatine kinase, and blood urea nitrogen (P < 0:05). We used the training cohort to
construct a deep-learning model, for which the C-index was 0.833, or about 5% higher than that for the CPH model (0.786). The
C-index of the deep-learning model for the test cohort was 0.822, which was also higher than that for the CPH model (0.782). The
areas under the ROC curve for the 28-day, 90-day, and 1-year survival probabilities were 0.875, 0.865, and 0.874, respectively, in
the deep-learning model, respectively, and 0.830, 0.843, and 0.806 in the CPH model. These values indicate that the survival
analysis model based on deep learning is better than the traditional CPH model in predicting the survival of CCU patients.
Conclusion. A survival prediction model based on deep learning has higher accuracy than the CPH model in predicting the
survival of CCU patients, and it also has a better discrimination ability.

1. Introduction

Cardiovascular diseases, which include acute myocardial
infarction (AMI), arrhythmia, and other cardiovascular dis-
eases, have always been important life-threatening condi-
tions for patients. These diseases have the characteristics of
high prevalence, high disability, and high mortality. The

number of deaths due to cardiovascular disease in the world
reaches 15 million every year, ranking first among various
causes of death. The treatment and prognosis of cardiovas-
cular diseases have always been the focus of research.

In the late 1960s, the coronary care units (CCUs) were
established specifically for the research and treatment of car-
diovascular disease [1–3]. CCUs have been widely
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implemented since Killip and Kimball first reported that the
use of a CCU could reduce mortality by nearly 20% [4].
After a long period of development, the survival rate in
CCUs has increased from 18–20% to 40–46% over several
decades, demonstrating the effectiveness of these units
[5–7]. Studying the main factors that affect the survival of
CCU patients provides modern CCUs with more mortality
information, which helps to determine the main factors that
affect the survival of patients, thereby improving the stan-
dard of care for patients in these units [3].

As a statistical method, survival models are commonly
used in clinical research to identify potential risk factors
and predict the risk of various clinical outcomes, including
the overall survival of patients with various diseases (e.g.,
cancer). The Cox proportional-hazards regression (CPH)
model [8] is one of the most commonly used survival analy-
sis tools [9, 10]. It is a semiparametric model that can be
used to calculate the impact of characteristics (independent
variables) on the risk of specific events (e.g., death), such
as the effect of tumor size on the risk of death [11–13].
CPH-based survival models can help clinicians make
more-personalized treatment decisions for individual
patients. The traditional CPH model assumes that each
independent variable has a linear effect on the model over
time [14, 15]. However, in many cases, this linearity assump-
tion will oversimplify the relationship between predictors
and prognosis, especially in cancer diseases with a poor
prognosis [16]. At the same time, data with high nonlinear-
ity, high dimensionality, and from small samples will bring
computational challenges. Deep-learning-based methods
integrate clinical data into neural networks and provide
powerful nonlinear capabilities to survival forecasts [17].
Deep learning will provide more complex and accurate algo-
rithm support for survival analysis and may result in more
practical predictive models.

This study was based on a large amount of medical data
from the intensive disease database (MIMIC-III database),
which aimed to develop a deep learning model to predict
the mortality of CCU patients and to provide a theoretical
basis and model basis for their treatment and prognosis.

2. Methodology

Figure 1 outlines the general flow of this research, whose
main steps were data extraction, data preprocessing, model
training, and model evaluation. Specifically, the Multipa-
rameter Intelligent Monitoring in Intensive Care III
(MIMIC-III) database [18] was investigated. PostgreSQL
[19] and SQL [20] were used for data extraction, the Acute
Physiological Score III (APS-III) and Sequential Organ Fail-
ure Assessment (SOFA) score were calculated, and Python
[21] was used for data preprocessing [22] and model evalu-
ation. We used the PyTorch deep-learning framework [23]
to construct the neural network, and Python and R [24] were
used for data visualization. The experiments were run on an
NVIDIA GTX1050 GPU.

2.1. Data Extraction. All patient data included in this study
were obtained from the MIMIC-III database [18]. This is a

large public database that contains anonymous health-
related information related to more than 40,000 patients
who stayed in the intensive care units (ICUs) of Beth Israel
Deacon Medical Center between 2001 and 2012 [18, 25].
The database includes demographic information, vital-sign
measurements made at the bedside (approximately one data
point per hour), laboratory test results, procedures, medica-
tions, caregiver care, imaging reports, and mortality infor-
mation (in-hospital and during hospitalization). Through
the registration website, we obtained the relevant certificate
and applied for and signed the agreement to obtain the right
to use the data. Referring to the official tutorial for establish-
ing a PostgreSQL database, SQL was used to identify all
CCU patients in the database and obtain relevant data.

2.2. Data Preprocessing. We extracted the relevant data on
CCU patients, including their physiological index data, as
detected by the CareVue and MetaVision systems from the
constructed MIMIC-III database. The data table stores the
original values recorded by medical staff or obtained during
system monitoring, which need to be summarized and proc-
essed before they can be applied to the model. We first sum-
marized the patient indicators of two monitoring systems,
counted the number of patients with different diseases, and
selected the five most-representative diseases with the largest
number of patients for inclusion in this research. The
patient’s survival time and survival status were included in
the prediction method.

2.3. Research Method. The patient data extracted from the
MIMIC-III database were grouped according to the disease,
and the five disease states with the largest number of patients
and relevant health records were selected for the analyses.
The five disease states were AMI, heart failure, tachycardia,
respiratory failure, and valve disorder. Related health
records were also obtained, including age, sex, race, heart
rate, respiratory rate, body temperature, systolic blood pres-
sure, diastolic blood pressure, oxygen saturation, neutro-
phils, lymphocytes, white blood cells, platelets, hemoglobin,
anion gap, bicarbonate, chloride, glucose, sodium, potas-
sium, hematocrit, creatine kinase, and blood urea nitrogen.

We grouped the data indicators according to their stan-
dard physiological standard ranges and then used the CPH
model and stepwise regression analysis to determine the
baseline clinical characteristics related to survival status,
which revealed nine characteristics with statistically signifi-
cant hazard ratios (HRs). Considering clinical factors, we
finally chose age, race, anion gap, glucose, neutrophils, white
blood cells, potassium, creatine kinase, and blood urea nitro-
gen as predictors. The SOFA score and simplified APS-III
were calculated according to the official codes in the
MIMIC-III database, and they were incorporated into the
model as variables. The patient survival time was calculated
based on the date of death from the social security database
(dod_ssn from table PATIENTS.csv) and the admission time
(ADMITTIME from table ADMISSIONS.csv) and with a
survival indicator of 1. If there was no time to death, the lon-
gest recorded time of monitoring care was taken as the
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patient’s survival time (90 days or 4 years), with a survival
indicator of 0.

We then used the selected features to construct a survival
analysis model, comprising a deep-learning neural-network
model with three hidden layers. We compared the deep-
learning model with the CPH model, calculated their C-
indexes and areas under the receiver operating characteristic
(ROC) curves (AUCs) in the testing cohort to evaluate their
judgment and discrimination abilities, and drew a calibra-
tion plot to evaluate the consistency of the model.

2.4. Statistical Analysis.We first performed a descriptive sta-
tistical analysis of the data of CCU patients. Continuous var-
iables were expressed as the median (25th to 75th percentile)
values (because they were not normally distributed), and cat-
egorical variables were expressed as percentages. The
patients were randomly assigned to the training cohort
(70%) or testing cohort (30%) for model construction and
validation. The backward stepwise selection method was
then applied to the CPH model with the training cohort to
select variables. The accuracy of the model was evaluated
using the C-index and AUC. A calibration plot was used to
evaluate the agreement between the labeling results and the
predicted probabilities.

2.5. Model Design. Our model is based on the mainstream
deep-learning framework PyTorch, comprising a feed-
forward neural network with three hidden layers
(Figure 2). We used to represent the clinical feature predic-
tor variable, with m = 16, k = 16, and l = 8, and we finally

output the patient’s risk value. Batch normalization, a non-
linear activation layer, and a dropout layer were used
between each hidden layer in order to increase the fitting
ability of the model.

3. Results

3.1. Patient Characteristics. Table 1 lists the baseline charac-
teristics of patients in the training and testing cohorts. The
training cohort included 2,371 patients admitted to the
CCUs unit, comprising 1,479 males (62.4%) and 892 females
(37.6%) with a mean age of 70 years.

The first diagnosis of these patients was predominantly
MI (n = 1,477, 62.3%), followed by heart failure (n = 498,
21%), tachycardia (n = 164, 6.9%), respiratory failure
(n = 132, 5.2%), and valve disorder (n = 109, 4.6%). A log-
rank test used to assess differences between the two cohorts
produced P = 0:730, indicating no significant difference in
the survival curves between the two cohorts and a balanced
data distribution. The Kaplan-Meier analysis curve of the
train and test cohorts is shown in Figure 3.

3.2. Variable Screening. The age at diagnosis, current age,
sex, race, anion gap, glucose, neutrophils, white blood cells,
potassium, creatine kinase, blood urea nitrogen, APS-III,
and SOFA score were entered into the multivariate CPH
analysis. Table 2 lists the results of the multivariate CPH
analysis. Combining the basic data statistics in Table 1 and
multivariate CPH survival analysis showed that CCU mor-
tality was not correlated with patient sex, whereas patients
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Figure 1: Work flow overview.
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Table 1: Baseline demographic and laboratory characteristics of patients.

Variable
Training cohort Testing cohort

P
(n = 2371) (n = 1017)

Disease (%)

0.742

Myocardial infarction 1477 (62.3) 629 (61.8)

Heart failure 498 (21.0) 226 (22.2)

Tachycardia 164 (6.9) 67 (6.6)

Respiratory failure 123 (5.2) 44 (4.3)

Valve disorder 109 (4.6) 51 (5.0)

Race (%)

0.321

White 1659 (70.0) 698 (68.6)

Black 136 (5.7) 64 (6.3)

Asia 27 (1.1) 13 (1.3)

Hispanic 34 (1.4) 25 (2.5)

Others 50 (2.1) 26 (2.6)

Unknown 465 (19.6) 191 (18.8)

Anion gap (mEq/L, %)

0.104
8~16 1092 (46.1) 464 (45.6)

<8 130 (5.5) 39 (3.8)

>16 1149 (48.5) 514 (50.5)

Glucose (mg/dL, %)

0.377
70~140 1481 (62.5) 658 (64.7)

<70 45 (1.9) 15 (1.5)

>140 845 (35.6) 344 (33.8)

Neutrophil (%)

0.868
50~70 366 (15.4) 163 (16.0)

<50 50 (2.1) 23 (2.3)

>70 1955 (82.5) 831 (81.7)

White blood cell (K/uL, %)

0.611
4~10 1947 (82.1) 838 (82.4)

<4 5 (0.2) 4 (0.4)

>10 419 (17.7) 175 (17.2)

Potassium (mEq/L, %)

0.659
3.5~5.5 1933 (81.5) 841 (82.7)

<3.5 4 (0.2) 1 (0.1)

>5.5 434 (18.3) 175 (17.2)

Creatine kinase (%)

0.013
18~198 1126 (47.5) 529 (52.0)

<18 17 (0.7) 2 (0.2)

>198 1228 (51.8) 486 (47.8)

Blood urea nitrogen (mg/dL, %)

0.869
6~22 764 (32.2) 320 (31.5)

<6 11 (0.5) 4 (0.4)

>22 1596 (67.3) 693 (68.1)

Sex =male/f emale (%) 1479/892 (62.4/37.6) 609/408 (59.9/40.1) 0.183

Age (median [IQR]) 70 [59,79] 70 [59,79] 0.769

APS-III score (mean (SD)) 42.80 (19.38) 42.12 (18.94) 0.348

SOFA score (mean (SD)) 3.76 (2.93) 3.76 (2.96) 0.976

Status = alive/dead (%) 1311/1060 (55.3/44.7) 568/449 (55.9/44.1) 0.794
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with heart failure (HR = 1:508, P < 0:001), tachycardia
(HR = 1:598, P = 0:001), and respiratory failure
(HR = 1:984, P < 0:001) had higher risks of death compared
with MI patients. Compared with white race, patients classi-
fied as Hispanic (HR = 1:647, P = 0:080) and unknown race
(HR = 1:446, P < 0:001) had higher risks of death. The fol-
lowing indicators were positively correlated with a higher
risk of death: anion gap (<18 and >16mmol/L), glucose
(>140 g/dL), white blood cells (>10 × 109/L), potassium (<
3.5 and >5.5mmol/L), creatine kinase (<18 and >198U/L),
and blood urea nitrogen (>22mg/dL). Age, APS-III, and
SOFA score were also positively correlated with the risk of
death.

3.3. Cox Proportional-Hazards Regression Model and Deep-
Learning Model in the Training and Testing Cohorts. The
performance of survival prediction based on deep learning
was compared with the CPH model using the testing cohort.
The performance of these two models was compared using
Harrell’s C-index, which measures the consistency between
the predicted risk and actual survival. The training and test-
ing results for the deep-learning model are shown in
Figure 4. We stopped training in advance to avoid overfitting
and obtain the best model. The deep-learning survival model
performed best, with C-indexes in the training and testing
cohorts of 0.833 and 0.822, respectively, while they were
0.786 and 0.782 for the CPH model.
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Figure 3: Kaplan-Meier curve of training and testing sets. There
was no statistically significant difference between the survival of
training and testing sets in the log-rank test (P = 0:73).

Table 2: Selected variables by multivariable Cox regression
analysis.

Multivariate analysis
Variables HR 95% CI P value

Disease

Myocardial infarction Reference

Heart failure 1.508 1.275-1.785 <0.001
Tachycardia 1.598 1.213-2.106 0.001

Respiratory failure 1.984 1.557-2.528 <0.001
Valve disorder 0.947 0.66-1.359 0.768

Race

White Reference

Black 0.988 0.745-1.309 0.931

Asia 0.752 0.399-1.419 0.379

Hispanic 1.647 0.942-2.880 0.080

Others 0.531 0.314-0.897 0.018

Unknown 1.446 1.241-1.686 <0.001
Sex

Male Reference

Female 1.019 0.897-1.156 0.777

Anion gap (mmol/L)

8~16 Reference

<8 1.356 1.018-1.807 0.038

>16 1.253 1.090-1.439 0.001

Glucose (g/dL)

70~140 Reference

<70 0.86 0.574-1.289 0.466

>140 1.173 1.031-1.333 0.015

White blood cell (X109/L)

4~10 Reference

<4 1.459 0.358-5.945 0.598

>10 1.454 1.246-1.696 <0.001
Neutrophil (%)

50~70 Reference

<50 0.639 0.395-1.034 0.068

>70 0.852 0.704-1.032 0.101

Potassium (mmol/L)

3.5~5.5 Reference

<3.5 22.994 7.262-72.808 <0.001
>5.5 1.215 1.048-1.410 0.01

Creatine kinase (U/L)

18~198 Reference

<18 2.255 1.246-4.079 0.007

>198 0.856 0.744-0.984 0.029

Blood urea nitrogen (mg/dL)

6~22 Reference

<6 1.066 0.393-2.892 0.899

>22 1.584 1.312-1.913 <0.001
Age 1.030 1.024-1.036 <0.001
APS-III 1.021 1.016-1.026 <0.001
SOFA 1.054 1.022-1.088 0.001
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3.4. Comparison between the Deep-Learning Model and the
Cox Proportional-Hazards Regression Model. The calibration
plot in Figure 5 shows that compared with the CPH model,
the 28-day, 90-day, and 1-year probability standard curves
of the deep-learning model were very close to the standard
45-degree diagonal, which indicates that the new model is
well calibrated.

We calculated the 28-day, 90-day, and 1-year ROC
curves of the two models to verify their discrimination abil-
ities. Figure 6 shows the overall performance of the survival
analysis model. The AUCs for the 28-day, 90-day, and 1-
year survival probabilities were 0.875, 0.865, and 0.874,
respectively, for the deep-learning model, and 0.830, 0.843,
and 0.806 for the CPH model. It indicates that the deep
learning model is more accurate and has better classification
discrimination in predicting the survival prognosis of CCU
patients.

4. Discussion

In this study, we developed and verified an accurate deep
learning model for predicting the risk of death in CCU
patients. Because the traditional regression model predicts
mortality rate based on a simplified relationship between
predictor variables and prognosis, it is difficult to improve
the predictive ability of that model. Therefore, based on
the strong nonlinear fitting ability and more precise algo-
rithms of deep learning, we constructed a neural-network
model for predicting the survival rate of patients in the
CCUs and explored the influencing patient factors.

Previous studies found that the in-hospital mortality
rates of CCU patients were in the range of 5.6–15.2% [3,
26]. Although developments in modern medical technolo-
gies have significantly decreased the mortality rate of CCU
patients, the survivors in CCUs still have a high disability
rate. Analyzing the survival of CCU patients and under-
standing the influencing factors will help clinicians to choose
treatment options, improve survival rates, and avoid unnec-
essary treatments [10, 11]. Considering that the CPH model

is currently one of the most widely used models for predict-
ing the prognosis of various diseases, but the CPH model has
some inherent algorithmic flaws. In this study, a more com-
plex and accurate deep learning model was selected for com-
parison with the CPH model. It is to build a model that is
more suitable for predicting the mortality of CCU patients.

Under the guidance of clinicians and previous studies,
we have included variables related to mortality in CCU
patients, which are easily available clinically to improve the
usability of the model. After further analysis and variable
selection, the experimental results show that the neural-
network model based on deep learning showed better pre-
diction performance than the traditional semiparametric
CPH model. The C-index showed that the accuracy of the
deep-learning model (0.822) was about 4% better than that
of the CPH model (0.782). It was indicated that deep learn-
ing may be more suitable for handling large samples, multi-
variate and nonlinear survival analysis than the CPH model,
which was consistent with the research results [27–29].

The severe lack of data on critically ill patients is already
well known. In order to better study the treatment and prog-
nosis of CCU patients, we chose to use the MIMIC database,
which is difficult but with a large amount of data on critically
ill patients, as the data source for the study, which ensures
the reliability of the entire study results. All the C-indexes
shown in the results are close to 1, which shows that the
model constructed in this study has good judgment ability
and is better than the model reported in the related literature
[30–32]. The result of the calibration curve shows that this
study still has a high consistency.

It can be seen from the risk factors (i.e., age, race, anion
gap, glucose, neutrophils, white blood cells, potassium, crea-
tine kinase, blood urea nitrogen, APS-III, and SOFA score)
that are finally incorporated into the predictive model.
Although the current clinical scores have the greatest impact
on the prediction results, it is not the most suitable score for
patients with CCUs. Our model is improved on the basis of
the existing clinical scores and is more suitable for the prog-
nosis prediction of CCU patients. At the same time, some
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Figure 4: The loss and C-index change process diagram of training and testing.
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recognized risk factors that affect the outcome of CCU
patients, such as age, glucose, and creatine kinase, are also
included in the model constructed in this study, which
also reflects the reliability of the model. Of course, all
the risk factors in the model have strong clinical accessi-
bility, which also provides convenience for patients and
medical staff to use.

This research was subject to some limitations. First, it
only included CCU patients from a single center, and hence,

the obtained results might not be generalizable to other pop-
ulations. Utilizing larger datasets from multiple centers may
provide more-reliable results and further establish the effec-
tiveness of deep-learning-based survival prediction in CCU
patients. Second, we only selected more-serious diseases in
the CCUs, and so the overall predictions may be biased,
reducing the prognostic ability of the new model in some
patients with rare diseases. It is necessary to find a better
way to establish a unified model for different diseases to
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predict the overall survival of CCU patients. Finally, due to
the inexplicability of deep-learning models, the prediction
process is a black-box model, which is not conducive to
understanding the impact of each included factor. An inter-
pretable neural-network model and higher accuracy AUC
score are a feasible research direction in the future.

5. Conclusion

This study first used stepwise regression analysis to deter-
mine the risk factors that affect the prognosis of CCU
patients and then constructed a three-layer neural network

prediction model based on these risk factors. The findings
demonstrate that the deep-learning model can provide good
predictions for the prognosis of CCU patients, with its per-
formance ability being better than that of the CPH predic-
tion model.

Abbreviations

CCUs: Coronary care units
MIMIC-III: Medical Information Mart for Intensive Care

III
CPH: Cox proportional-hazards regression
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Figure 6: ROC plot. Comparison of ROC between the CPH model and the deep learning model in (a) 28 days, (b) 90 days, and (c) 1 year in
testing cohort population.
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C-index: Concordance indexes
ROC: Receiver operating characteristic
AMI: Acute myocardial infarction
APS-III: Acute Physiological Score III
SOFA: Sequential Organ Failure Assessment
ICUs: Intensive care units
ROC: Receiver operating characteristic.
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